Spin-enabled photochemistry using nanocrystal-molecule hybrids

نویسندگان

چکیده

•The short spin lifetimes of CsPbBr3 nanocrystals are useful for photochemistry•Nanocrystals flip the photoexcited dyes to produce molecular triplets•The triplets applied photon upconversion and singlet-oxygen generation Recent years have seen growing interest in properties solution-processed semiconductor materials made by chemists. These promise low-cost, scalable, flexible implementation spintronic quantum information technologies but still plagued their very (picoseconds) lifetimes. Here, we present that these can instead find immediate applications photochemistry largely relies on spin-relaxed triplet states. We demonstrate spin-enabled using surface-anchored with rhodamine B molecules time-resolved spectroscopy. In this system, excitation either nanocrystal or molecule induced charge separation, a rapid spin-flip carrier inside enabled high-yield formation through recombination, which triplet-fusion upconversion, generation, many more photochemical applications. Research lead halide perovskites has been rising recent hope scalable spintronics technologies. However, often found systems, suggesting long way go along direction. propose excited demonstrated interfaced (RhB) molecules. Photoexcitation RhB led hole injection into nanocrystals; subsequent recombination charge-separated states efficiently populated triplets. also produced similar mechanism. Because complementary spectral coverage RhB, achieved efficient white-light-driven from nanocrystal-molecule hybrids. Lead emerged as an exciting material platform plethora energy optoelectronic devices.1Correa-Baena J.P. Saliba M. Buonassisi T. Grätzel Abate A. Tress W. Hagfeldt Promises challenges perovskite solar cells.Science. 2017; 358: 739-744Crossref PubMed Scopus (1240) Google Scholar, 2Sutherland B.R. Sargent E.H. Perovskite photonic sources.Nat. Photon. 2016; 10: 295-302Crossref (1229) 3Kovalenko M.V. Protesescu L. Bodnarchuk M.I. Properties potential nanocrystals.Science. 745-750Crossref (1476) 4Green M.A. Ho-Baillie Snaith H.J. The emergence cells.Nat. 2014; 8: 506-514Crossref (5151) 5Stranks S.D. Metal-halide photovoltaic light-emitting devices.Nat. Nanotechnol. 2015; 391-402Crossref (2328) 6Dey Ye J. De Debroye E. Ha S.K. Bladt Kshirsagar A.S. Wang Z. Yin Y. et al.State art prospects nanocrystals.ACS Nano. 2021; 15: 10775-10981Crossref (435) Scholar Some studies start focus novel such technologies, motivated rich physics associated spin-orbit coupling symmetry breaking phenomena materials.7Yang Yang Zhu K. Johnson J.C. Berry J.J. van de Lagemaat Beard M.C. Large polarization-dependent exciton optical Stark effect iodide perovskites.Nat. Commun. 7: 12613Crossref (90) 8Giovanni D. Ma H. Chua Ramesh R. Mhaisalkar S. Mathews N. Sum T.C. Highly spin-polarized dynamics ultralarge photoinduced magnetization CH3NH3PbI3 thin films.Nano Lett. 1553-1558Crossref (162) 9Odenthal P. Talmadge Gundlach Zhang C. Sun Yu Z.-G. Vardeny V.Z. Li Y.S. Spin-polarized beating hybrid organic–inorganic Phys. 13: 894-899Crossref (157) 10Even Pedesseau Jancu J.-M. Katan Importance spin–orbit organic/inorganic applications.J. Chem. 2013; 4: 2999-3005Crossref (945) 11Kepenekian Robles Sapori Even Rashba Dresselhaus effects perovskites: From basics devices.ACS 9: 11557-11567Crossref (264) 12Kim Y.H. Zhai Lu Pan X. Xiao Gaulding E.A. Harvey S.P. Z.V. Luther J.M. al.Chiral-induced selectivity enables room-temperature diode.Science. 371: 1129-1133Crossref (193) 13Long G. Jiang Sabatini Wei Quan L.N. Liang Q. Rasmita Askerka Walters al.Spin control reduced-dimensional chiral 2018; 12: 528-533Crossref (269) Extra benefits scalability, flexibility compared traditional magnetic materials.14Wasielewski M.R. Forbes M.D.E. Frank N.L. Kowalski Scholes G.D. Yuen-Zhou Baldo Freedman D.E. Goldsmith R.H. Goodson al.Exploiting chemistry systems science.Nat. Rev. 2020; 490-504Crossref (138) Scholar,15Atzori Sessoli second revolution: role chemistry.J. Am. Soc. 2019; 141: 11339-11352Crossref (200) For coherence time is prerequisite. This, however, remains big challenge various forms materials. At room temperature, relaxation reported bulk perovskites, two-dimensional (2D) layered 0D (NCs) picosecond timescales.8Giovanni Scholar,16Li Luo Liu Wu Size- composition-dependent dots.ACS Energy 5: 1701-1708Crossref (30) 17Giovanni Chong W.K. Y.Y.F. Dewi H.A. Lekina Shen Z.X. Gan C.K. Coherent quasiparticle 2D perovskites.Adv. Sci. (Weinh). 1800664Crossref (54) 18Chen Ndione P.F. Impact layer thickness lifetime single crystals.ACS 3: 2273-2279Crossref (100) 19Zhou Sarmiento J.S. Fei Effect composition perovskites.J. 11: 1502-1507Crossref (31) 20Strohmair Dey Tong Polavarapu Bohn B.J. Feldmann Spin polarization free carriers CsPbI3 nanocrystals.Nano 20: 4724-4730Crossref (23) example, engineered thickness18Chen dielectric constant organic layers,21Chen Lunin V. Sercel P.C. Tuning metal–halide binding energy.J. 143: 19438-19445Crossref (21) longest was limited at 26 ps.21Chen NCs depend upon NC sizes compositions overall range 1–3 ps.16Li Several over nanoseconds low temperatures, those assigned so-called resident probably representing only small portion initial photogenerated carriers/excitons.9Odenthal Scholar,22Belykh V.V. Yakovlev D.R. Glazov M.M. Grigoryev P.S. Hussain Rautert Dirin D.N. Kovalenko Bayer electrons holes crystals.Nat. 673Crossref (83) reasons, exploratory devices spin-light-emitting diodes (spin-LEDs) exhibited few percents.12Kim Scholar,13Long Although there (i.e., prolonging orders magnitudes) toward technological may enable spin-flipped states.23Turro N.J. Ramamurthy Scaiano Modern Molecular Photochemistry Organic Molecules. University Science Books, 2010Google Scholar,24Turro Kleinman M.H. Karatekin Electron electron paramagnetic resonance: paradigms supramolecular photochemistry.Angew. Int. Ed. 2000; 39: 4436-4461Crossref (63) A variety transformation reactions, photoredox, isomerization, cycloaddition, occur states.25Welin E.R. Le Arias-Rotondo D.M. McCusker J.K. MacMillan D.W.C. Photosensitized, transfer-mediated organometallic catalysis electronically nickel(II).Science. 355: 380-385Crossref (230) 26Ghosh I. Shaikh R.S. König B. Sensitization-initiated transfer photoredox catalysis.Angew. Engl. 56: 8544-8549Crossref (156) 27Jiang Weiss Colloidal dots photocatalysts state reactions molecules.J. 142: 15219-15229Crossref (50) 28Jiang Rogers C.R. Kodaimati M.S. Regio- diastereoselective intermolecular [2+2] cycloadditions photocatalysed dots.Nat. 1034-1040Crossref (136) Triplets engaged environmental medical applications.29DeRosa Crutchley R.J. Photosensitized singlet oxygen its applications.Coord. 2002; 233–234: 351-371Crossref (2273) Moreover, witnessed flurry research because participation downconversion processes.30Smith M.B. Michl Singlet fission.Chem. 2010; 110: 6891-6936Crossref (1429) 31Schulze T.F. Schmidt T.W. Photochemical upconversion: status application conversion.Energy Environ. 103-125Crossref 32Rao Friend Harnessing fission break Shockley–Queisser limit.Nat. Mater. 2: 17063Crossref (240) 33Miyata Conrad-Burton F.S. Geyer F.L. X.Y. Triplet pair 119: 4261-4292Crossref (222) Along line, some previous already including films,34Wieghold Bieber VanOrman Z.A. Daley Leger Correa-Baena J.-P. Nienhaus sensitization films solid-state subsolar fluxes.Matter. 1: 705-719Abstract Full Text PDF (71) 35Nienhaus Wieghold Einzinger Lin T.-A. Shulenberger K.E. Klein N.D. Bulović al.Triplet-sensitization near-infrared-to-visible upconversion.ACS 888-895Crossref (98) 36VanOrman Bulk metal sensitizers: taking 6: 3686-3694Crossref (20) 37Conti Moller Schaller R.D. Strouse G.F. Ultrafast perovskite/Rubrene interface.ACS 2022; 617-623Crossref (14) layers,38Tian Chen Lai He Han Sensitized excimer emission 2247-2255Crossref (24) 39Lin Y.L. Interlayer Dion–Jacobson containing naphthalene diammonium cations.J. 4793-4798Crossref (11) 40Ema Inomata Kato Kunugita Era Nearly perfect triplet-triplet Wannier excitons organic-inorganic quantum-well materials.Phys. 2008; 100: 257401Crossref (144) 41Era Maeda Tsutsui Enhanced phosphorescence naphthalene-chromophore incorporated bromide-based having superlattice structure.Chem. 1998; 296: 417-420Crossref (87) 42Hu Zhao Gao Qiao Salim Chia E.E.M. Grimsdale A.C. Lam Y.M. Harvesting lead-halide phosphorescence.Chem. 31: 2597-2602Crossref (40) 43Hu Meier F. Abe Deibel al.Efficient engineering.Adv. 30e1707621Crossref (91) 44Yang Gong Huang Zhen Ling afterglow luminescence common fluorophores perovskites.Chem. 8975-8981Crossref NCs,45Mase Okumura Yanai Kimizuka upconversion.Chem. (Camb). 53: 8261-8264Crossref 46He Visible-to-ultraviolet efficiency above 10% sensitized quantum-confined nanocrystals.J. 5036-5040Crossref (77) 47Luo Ding confinement.J. 4186-4190Crossref (133) 48He Tian Engineering via Wavefunction geometry.Angew. 59: 17726-17731Crossref (15) 49Luo Nie Castellano F.N. al.Mechanisms across inorganic nanocrystal/organic interface.Nat. 28Crossref (93) 50Luo mediated transfer.J. 11270-11278Crossref (56) 51Koharagi Harada Miyano Hisamitsu Green-to-UV new nanocrystal-transmitter-emitter combination.Nanoscale. 19890-19893Crossref 52Han colloidal 3151-3166Crossref (28) were able sensitize mechanisms direct perovskite-molecule states.49Luo Scholar,50Luo mechanisms, essentially played spin-flipper mixer formation. further formulate general framework demonstrating attached well. Using spectroscopy, discovered photoexcitation NCs; component induce separation formation, applications, NC-molecule complexes used study they be neatly assembled solution well-defined charge/energy studies.53Zhu Lian Charge dots.Annu. 67: 259-281Crossref (130) Scholar,54Mongin Garakyaraghi Razgoniaeva Zamkov Direct observation 351: 369-372Crossref (282) Further, chose hybrids charge-transfer processes principle photochemistry. Such feature staggered (type II) level alignment. Figure 1 illustrates situation where lowest unoccupied orbital (LUMO) highest occupied (HOMO) lower energies, respectively, than conduction band (CB) valence (VB) edges NCs, applies opposite situation. As depicted 1A, initiates (ET) CB LUMO. case ET slower should dominated spin-triplet configuration statistically favored one (as drawn 1A). If higher energy, (CR), (HT) anions, generates Note HT paper defined species donors. Alternatively, occurs before spin-flip, form CR much NCs. This ET-mediated our CsPbBr(Cl)3 molecules.50Luo Picosecond NCs21Chen guarantees it least faster nanosecond process, if not formation.50Luo It well known type II heterostructure separation. system shown 1, addition alternative pathway (Figure 1B) excite inject VB filling HOMO). Following fast NCs,16Li Scholar,55Kim Wong C.Y. Exciton fine structure dots.Acc. Res. 2009; 42: 1037-1046Crossref (72) states, anions back populate triplet-generating strategy NC-sensitized initiated rather exploits behavior intersystem crossing (ISC) distinct conventional heavy-atom ISC does involve recombination. introduced above, previously established electron-transfer-mediated NCs.50Luo thus focuses 1B, is, Synthetic details herein provided supplemental information. 2A shows absorption spectrum hexane peak 490 nm, corresponding nanocubes edge length ∼6.3 ± 0.4 nm S1). onto surfaces presumably carboxyl group. After attachment, NC-RhB contains contributions both Importantly, responses each other, hence, harvest most photons below 600 2A). advantage design will illustrated later. An approximate alignment obtained basis positions NCs49Luo redox potentials RhB,56Boulesbaa Issac Stockwell Guo CdS dot/rhodamine b interface.J. 2007; 129: 15132-15133Crossref (221) plotted 2B. component, confirmed photoluminescence (PL) measurements. 2C, PL selective 540 displays near-unity quenching consistent (1RhB∗) HOMO; 1B). Similarly, 330 (dominated absorption) strongly quenched 2D). latter case, possibilities Förster Dexter mechanisms57DuBose J.T. Kamat P.V. Directing perovskite–chromophore assemblies.J. 19214-19223Crossref (26) cannot excluded. Nevertheless, 1RhB∗, triggering pathways same 2C. Time-resolved measured single-photon counting indicates instrumental resolution (∼1 ns); see S2. femtosecond transient (TA) investigate processes; setups. TA experiment prior study50Luo (see S3 related data current sample), here, RhB. measurements performed under deaerated conditions, pump powers lowered small-signal regime multiexciton negligible. 3A pseudocolor excitation. beginning, ground-state bleach (GSB; ∼560 nm) stimulated (SE; 570–650 features dominate spectra. SE decays picoseconds, accompanied strong (490 two nearby (∼475 500 nm). observed S4A). On 2B, decay NC-related attributed 1RhB∗

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water-processable polymer-nanocrystal hybrids for thermoelectrics.

We report the synthesis and thermoelectric characterization of composite nanocrystals composed of a tellurium core functionalized with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Solution processed nanocrystal films electronically out perform both PEDOT:PSS and unfunctionalized Te nanorods while retaining a polymeric thermal conductivity, resultin...

متن کامل

Spatially indirect emission in a luminescent nanocrystal molecule.

Recent advances in the synthesis of multicomponent nanocrystals have enabled the design of nanocrystal molecules with unique photophysical behavior and functionality. Here we demonstrate a highly luminescent nanocrystal molecule, the CdSe/CdS core/shell tetrapod, which is designed to have weak vibronic coupling between excited states and thereby violates Kasha's rule via emission from multiple ...

متن کامل

Quantum Entanglement and Spin Control in Silicon Nanocrystal

Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via p...

متن کامل

Paramagnetic ion-doped nanocrystal as a voltage-controlled spin filter.

A theory of spin injection from a ferromagnetic source into a semiconductor through a paramagnetic ion-doped nanocrystal is developed. Spin-polarized current from the source polarizes the ion; the polarized ion, in turn, controls the spin polarization of the current flowing through the nanocrystal. Depending on voltage, the ion can either enhance the injection coefficient by several times or su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2022

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2022.03.003